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Occurrence, Repetition and Matching of Patterns
in the Low-temperature Ising Model
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We continue our study of the exponential law for occurrences and returns of
patterns in the context of Gibbsian random fields. For the low-temperature
plus-phase of the Ising model, we prove exponential laws with error bounds for
occurrence, return, waiting and matching times. Moreover we obtain a Poisson
law for the number of occurrences of large cylindrical events and a Gumbel law
for the maximal overlap between two independent copies. As a by-product, we
derive precise fluctuation results for the logarithm of waiting and return times.
The main technical tool we use, in order to control mixing, is disagreement
percolation.

KEY WORDS: Disagreement percolation;exponential law; Poisson law; Gumbel
law; large deviations.

1. INTRODUCTION

The study of occurrence and return times for highly mixing random fields
has been initiated by Wyner, see ref. 16. In the context of stationary pro-
cesses, there is a vast literature on exponential laws with error bounds for
α,ϕ,ψ-mixing processes, see e.g. ref. 3. for a recent overview. In the last
four years, very precise results were obtained by Abadi.(2) The advantage
of his approach is that it gives sharp bounds on the error of the exponen-
tial approximation and it holds for all cylindrical events. Moreover, it can
be generalized to a broad class of random fields, see ref. 4 for the case of
Gibbsian random fields in the Dobrushin uniqueness regime (high temper-
ature).
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Low-temperature Gibbsian random fields do not share the mixing
property of the Dobrushin uniqueness regime, i.e. they are not (non-uni-
formly) ϕ-mixing. So far, no results on exponential laws have been proved
in this context. To study these questions for Gibbsian random fields at
low temperature, the Ising model is a natural candidate to begin with. The
typical picture of the low-temperature plus-phase of this model is a sea
of plus spins with exponentially damped islands of minus spins. There-
fore decay of correlations of local observables can be estimated using the
technique of disagreement percolation as initiated in ref. 5 and further
exploited in ref. 6.

In this paper we prove the exponential law with error bounds for
occurrences and returns of cylindrical events for the low-temperature plus-
phase of the Ising model. As an application we also obtain the exponen-
tial law with error bounds for waiting and matching times. These results
can then be further exploited to obtain a Poisson law for the number
of occurrences of cylindrical events (the Poisson law for the number of
large contour has been obtained in ref. 9 in the limit of zero tempera-
ture). We also derive a ‘Gumbel law’ for the maximal overlap (in the spirit
of ref. 13) between two independent copies of the low-temperature Ising
model. Other applications are strong approximations and large deviation
estimates of the logarithm of waiting and return times. Our results are
based upon disagreement percolation estimates and are not limited to the
Ising model only. However in this paper we restrict to this example for the
sake of simplicity.

The paper is organized as follows. In Section 2 we introduce basic
notations, define occurrence and return times, and collect the mixing
results at low temperature based on disagreement percolation. In Section
3 we state our results. Section 4 is devoted to proofs.

2. NOTATIONS, DEFINITIONS

2.1. Configurations, Ising Model

We consider the low-temperature plus-phase of the Ising model on
Z
d , d�2. This is a probability measure P

+
β on lattice spin configurations

σ ∈�={+,−}Z
d
, defined as the weak limit as V ↑Z

d of the following finite
volume measures:

P
+
V,β(σV )= exp


−β

∑
<xy>∈V

σxσy −β
∑
<xy>:

x∈∂V, y /∈V

σx



/
Z+
V,β (2.1)
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where Z+
V,β is the partition function. In (2.1) < xy > denotes nearest

neighbor bonds and ∂V the inner boundary, i.e., the set of those x ∈ V
having at least one neighbor y /∈V . For the existence of the limit V ↑ Z

d

of P
+
V,β , see e.g. ref. 11.
For η∈�, V ⊆Z

d we denote by P
η
V,β the corresponding finite volume

measure with boundary condition η:

P
η
V,β(σV )= exp


−β

∑
<xy>∈V

σxσy −β
∑
<xy>:

x∈∂V, y /∈V

σxηy



/
Z
η
V,β .

Later on, we shall omit the indices β,+ (in P
+
β ) referring to the inverse

temperature and plus boundary condition respectively. We will choose β>
β0 >βc, i.e., temperature below the transition point, such that a certain
mixing condition, defined in detail below, is satisfied.

Let Vn ↑Z
d+ be an increasing sequence of sets such that

lim
n→∞

|∂Vn|
|Vn| =0.

In view of a later application to large deviation estimates, we need the fol-
lowing pressure function q �→P(qβ), q ∈R:

P(qβ)= lim
n→∞

1
|Vn| log

∑

σVn∈{+,−}Vn
exp


−qβ

∑
<xy>∈Vn

σxσy


 . (2.2)

(See ref. 11 for the existence of P(qβ).)

2.2. Patterns, Occurrence, Repetition and Matching Times

A pattern supported on a set V ⊆Z
d is a configuration σV ∈{+,−}V .

Patterns will be denoted by A. We will identify A with its cylinder, i.e.,
with the set {σ ∈� : σV =A}, so that it makes sense to write e.g. σ ∈A.
For x ∈Z

d , θx denotes the shift over x. For a pattern A supported on V ,
θxA denotes the pattern supported on V +x defined by θxA(y+x)=A(y),
y ∈ V . We observe that for any Gibbs measure, so in particular in our
context, we have the uniform estimate

P(σV =A)� e−δ|V | (2.3)
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for some δ>0 and all patterns A.
If A is a pattern supported on V , and W ⊆Z

d then we denote by (A≺
W) the event that there exists x ∈ Z

d such that V + x⊆W and such that
σV+x =θxA. In words this means that the pattern A appears in the set W .

Let V = (Vn) where Vn ↑Z
d+, is such that limn→∞ |∂Vn|

|Vn| = 0, and An a
pattern supported on Vn. We define

TV

An
=min{|Vk| :An≺Vk}.

In words, this is volume of the first set Vk in which we can see the pattern
An.

For n ∈ N let Cn be [0, n]d ∩ Z
d . We denote for x ∈ Z

d : C(x,n) =
Cn+x. For x, y ∈Z

d : |x−y|= maxd
i=1 |xi −yi |, and for subsets A,B⊆Z

d :
d(A,B)=minx∈A,y∈B |x−y|.

For σ ∈�, A a pattern supported on V , W ⊃V , we define the number
of occurrences of A in W :

N(A,W,σ)=
∑

x∈W :V+x⊆W
I (σV+x = θxA).

For a sequence Vn ↑Z
d+, the return time is defined as follows:

RσVn (σ )=min{|Vk| :N(σVn,Vk, σ )�2}.

Finally, for V =Vn ↑Z
d+, and σ , η∈�, we define the waiting time:

W(Vn, η, σ )=TV

ηVn
(σ ).

We are interested in this quantity for σ distributed according to
P and η distributed according to another ergodic (sometimes Gibbsian)
probability measure Q.

Finally, we consider ‘matching times’, in view of studying maximal
overlap between two independent samples of P. For σ , η∈�,

M(Vn, σ, η)=min{|Vk|:∃x: Vn+x⊆Vk, σVn+x =ηVn+x}.

In words, this is the minimal volume of a set of type Vk such that inside
Vk, σ and η match on a set of the form Vn+x.

In the sequel we will omit the reference to the sequence Vn, in order
not to overburden notation. In fact, proofs will be done for Vn = Cn =
[0, n]d ∩Z

d . The generalization to V is obvious provided that the following
two (sufficient) conditions are fulfilled:
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1. limn→∞ |∂Vn|
|Vn| =0;

2. There exists c > 0 such that, for all x with |x| � 1, |(Vn + x)�

Vn|� cn.

2.3. Mixing at Low Temperatures

In ref. 4 we derived exponential laws for hitting and return times
under a mixing condition of the type

sup
σ,η,ξ

|PηV (σW )−P
ξ
V (σW )|� |W | exp(−cd(V c,W)) (2.4)

usually called ‘non-uniform exponential ϕ-mixing’. This condition is of
course not satisfied at low temperatures since boundary conditions con-
tinue to have influence. Take e.g. W ={0}, η≡+, ξ ≡−, then for β >βc:

lim
V↑Zd

P
η
V (σ0 =+)−P

ξ
V (σ0 =+)=m+

β >0

where 0<m+
β = ∫

σ0dP(σ ) is the magnetization. This clearly contradicts
(2.4). However, for local functions f, g we do have an estimate like

∣∣∣
∫
f θxg dP−

∫
f dP

∫
gdP

∣∣∣�C(f, g) e−c(β)|x|.

The intuition here is that there can only be correlation between two func-
tions if the clusters containing their dependence sets are finite (i.e., not
contained in the sea of pluses) and intersect. Since finite clusters are expo-
nentially small (in diameter), we have exponential decay of correlations of
local functions.

This idea is formalized in the context of ‘disagreement percolation’.
To introduce this concept, we define a path γ ={x1, . . . , xn}, i.e., a subset
of Z

d such that xi and xi−1 are neighbors for all i=1, . . . , n.
More formally, for W ⊆ V and η and ξ ∈�, we have the following

inequality:

|PηV (σW )−P
ξ
V (σW )|� |∂W | P

η
V ⊗P

ξ
V (W�∂V ). (2.5)

Here (W�∂V ) denotes the event of those couples (σ1, σ2) ∈ �V × �V
where there is ‘a path of disagreement’ γ leading from W to the boundary
of V such that σ1(x) 
=σ2(x) for all x∈γ . Of course whether the probabil-
ity of this event under the measure P

η
V ⊗P

ξ
V will be small depends on the
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distance between V and W and on the chosen boundary conditions η, ξ .
The estimate (2.5) as well as the ideas of disagreement percolation can be
found in refs. 6 and 13.

On the top of inequality (2.5) we have the following estimate of ref.
7, see ref. 12:

P⊗P(∂W�∂V )� e−c(β)d(W,∂V ) (2.6)

as soon as β >β0(>βc), and where c(β)→∞ as β→∞.
In the rest of the paper we always work with β >β0, so that we can

apply (2.5), (2.6). We emphasize that the next results are in fact valid not
only for the Ising model at low temperature but also for any Markovian
random field for which the above disagreement percolation estimates hold.

3. RESULTS

3.1. Exponential Laws

Theorem 1 (Occurrence times). There exist 0<�1 ��2<∞, c, c′>0,
0<κ <c, such that for all patterns A=An supported on Cn, there exists
λA ∈ [�1,�2] such that for all n and all t <eκn

d
:

∣∣∣P
(

TA� t

λAP(A)

)
− e−t

∣∣∣� e−ct e−c′nd . (3.1)

For return times we have to restrict to ‘good patterns’, i.e., patterns which
are not ‘badly self-repeating’ in the following sense:

Definition 1. A pattern An is called good if for any x with |x|<n/2,
for the cylinders we have An∩ θxAn=∅.

Good patterns have a return time at least (n/2 + 1)d and as we will
see later that this property guarantees that the return time is actually of
the order ecn

d
.

The following lemma is proved in ref. 4 for general Gibbsian random
fields.

Lemma 1. Let Gn be the set of all good patterns. There exists c> 0
such that

P(Gn)�1− e−cnd .

We denote by P(·|A) the measure P conditioned on the event A≺Cn.
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Theorem 2 (Repetition time). There exist 0<�1 ��2 <∞, c, c′> 0,
0<κ < c, such that for all good patterns A=An supported on Cn, there
exists λA ∈ [�1,�2] such that for all n and all t <eκn

d
:

∣∣∣P
(

RA� t

λAP(A)

∣∣∣A
)

− e−t
∣∣∣� e−ct e−c′nd . (3.2)

We have the following analogue of Theorem 1 for matching times.

Theorem 3 (Matching time). There exist 0<�1 ��2 <∞, c, c′ > 0,
0<κ <c, such that for all patterns A=An supported on Cn, there exists
λA ∈ [�1,�2] such that for all n and all t <eκn

d
:

∣∣∣P⊗P

(
(σ, η): Mn(σ, η)�

t

λnP⊗P(σCn =ηCn)

)
− e−t

∣∣∣� e−ct e−c′nd . (3.3)

3.2. Poisson Law

Let A=An be any pattern supported on Cn. For t >0, let C(t/P(A))
be the maximal cube of the form Ck= [0, k]d ∩Z

d such that |Ck|� t/P(A).
Observe that

|C(t/P(A))|
t/P(A)

→1

as n→∞. Define

Nn
t (σ )=N(An,C(t/P(A)), σ ). (3.4)

Then we have

Theorem 4. If σ is distributed according to P, and An is a sequence
of good patterns, then the processes {Nn

t /λAn : t � 0} converge to a mean
one Poisson process {Nt : t � 0} weakly on path space, where λAn is the
parameter of Theorem 1.

3.3. Gumbel Law

To formulate the Gumbel law for certain extremes, we need simply
connected subsets Gn, n�1, such that |Gn|=n and Gnd =Cn. For instance,
for d=2, G1 ={(0,0)}, G2 ={(0,0), (1,0)}, G3 ={(0,0), (1,0), (1,1)}, G4 =
{(0,0), (1,0), (1,1), (0,1)}, etc.
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For η∈�, define

Mn(η, σ )=max{|Gk| :∃x ∈Gn with Gk +x⊆Gn and ηGk+x =σGk+x}
(3.5)

In words this is the volume of the maximal subset of the type Gk on
which η and σ agree. We have the following

Theorem 5. For any η∈�, there exists a sequence un ↑∞, and con-
stants λ,λ′, ν, ν′ ∈ (0,∞) such that for all x ∈Z

min{e−λ′e−ν′x , e−λe
−νx }� lim inf

n→∞ P⊗P ((η, σ ): Mn(η, σ )�un+x)

� lim sup
n→∞

P⊗P ((η, σ ): Mn(η, σ )�un+x)�max{e−λ′e−ν′x , e−λe
−νx }.

(3.6)

The fact that in the Gumbel law we only have a lower and an upper
bound is due to the discreteness of the Mn(σ, η). This situation can be
compared to the study of the maximum of independent geometrically dis-
tributed random variables, see for instance ref. 10.

Remark 1. Notice that in Theorem 5 we study the maximal matching
between two configurations on a specific sequence of supporting sets Gn.
Since in the low-temperature plus-phase we have percolation of pluses, the
same theorem would of course not hold for the cardinality of the maximal
connected subset of Cn on which η and σ agree because the latter subset
occupies a fraction of the volume of Cn.

3.4. Fluctuations of Waiting, Return and Matching Times

We denote by s(P) the entropy of P defined by

s(P)= lim
n→∞− 1

nd

∑

An∈{+,−}Cn
P(An) log P(An).

The next result (proved in Subsection 4.7) shows how the repetition
of typical patterns allows to compute the entropy from a single ‘typical’
configuration.
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Theorem 6. There exists ε0>0 such that for all ε >ε0

−ε logn� log
[
RσCn

(σ ) P(σCn)
]
� log lognε eventually P-almost surely.

(3.7)

In particular,

lim
n→∞

1
nd

log RσCn
(σ )= s(P) P-almost surely. (3.8)

Note that (3.8) is a particular case of the result by Ornstein and Weiss
in ref. 15 where P is only assumed to be ergodic. Under our assumptions,
we get the more precise result (3.7).

Remark 2. It follows immediately from (3.7) that the sequence
(log RσCn

(σ )/nd ) satisfies the central limit theorem if and only if
(− log P(σCn)/n

d ) does. However, in the low-temperature regime, we are not
able to prove the central limit theorem for (− log P(σCn)/n

d ).

Suppose that η is a configuration randomly chosen according to an
ergodic random field Q and, independently, σ is randomly chosen accord-
ing to P. We denote by s(Q|P) the relative entropy density of Q with
respect to P, where

s(Q|P)= lim
n→∞

1
nd

∑

An∈{+,−}Cn
Q(An) log

Q(An)

P(An)
·

We have the following result (proved in Subsection 4.8):

Theorem 7. Assume that Q is an ergodic random field. Then there
exists ε0>0 such that for all ε >ε0

−ε logn� log
(
W(Cn, η, σ )) P(ηCn)

)
� log lognε (3.9)

for Q⊗P-eventually almost every (η, σ ). In particular

lim
n→∞

1
nd

log W(Cn, η, σ )= s(Q)+ s(Q|P) Q⊗P−a.s. (3.10)

Remark 3. If in (3.10) we choose Q = P
−, the low-temperature

minus-phase, we conclude that the time to observe a pattern typical for the
minus phase in the plus phase, is equal to the time to observe a pattern
typical for the plus phase, at the logarithmic scale.

The next theorem is proved in Subsection 4.9.
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Theorem 8. For all q ∈R the limit

W(q)= lim
n→∞

1
nd

log
∫

W(Cn, η, σ )
q dP⊗P(η, σ )

exists and equals

W(q)=
{
P((1−q)β)+ (q−1)P (β) for q�−1
P(2β)−2P(β) for q <−1

(3.11)

where P is the pressure defined in (2.2).

From this result, it follows that the sequence ( 1
nd

log W(Cn, η, σ )) sat-
isfies a generalized large deviation principle in the sense of Theorem 4.5.20
in ref. 8. The differentiability of q �→ P(qβ) would imply a full large
deviation principle.

Remark 4. A more general version of Theorem 8 can be easily
derived: The measure P⊗P can be replaced by the measure Q⊗P where Q

is any Gibbsian random field (without any mixing assumption). Of course
formula (3.11) has to be properly modified (see ref. 4).

For the matching times, we have the following analogue of Theorem 7
(see Subsection 4.10):

Theorem 9. There exists ε0>0 such that for all ε >ε0

−ε logn� log
(
M(Cn, η, σ ) P⊗P(σCn =ηCn)

)
� log lognε (3.12)

for P⊗P-eventually almost every (η, σ ). In particular

lim
n→∞

1
nd

log M(Cn, η, σ )=W(−1) P⊗P−a.s. (3.13)

4. PROOFS

From now on, we write A for An to alleviate notations. (Therefore A
is understood to be a pattern supported on Cn.)
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4.1. Positivity of the Parameter

The following lemma is the analogue of Lemma 4.3 in ref. 4.

Lemma 2 (The parameter). There exist strictly positive constants
�1,�2 such that for any integer t with tP(A)�1/2, one has

�1 �λA,t :=− log P(TA>t)
tP(A)

��2.

Proof. We proceed by estimating the second moment of the random
variable N(A,Ck, σ ), where k=�t1/d�. We have

E(N(A,Ck, σ ))
2 =

∑
x,y:x+Cn⊆Ck,y+Cn⊆Ck

P(θxA∩ θyA).

We split the sum in three parts: I1 = ∑
x=y , I2 = ∑

x 
=y,|x−y|��, I3 =∑
x 
=y,|x−y|>�, where �>0 will be specified later on.

We now estimate I1, I2 and I3. The quantities I1 and I2 are estimated
as in ref. 4. For I1 we have:

I1 = (k+1)dP(A).

For I2, using the Gibbs property (2.3) and d�2:

I2 � (k+1)d�de−δnP(A).

Only the third term involves the disagreement percolation estimate.

I3 − (k+1)2dP(A)2

�
∑

x 
=y,|x−y|>�
P(A) |P(σC(x,n)=A|σC(y,n)=A)−P(A)|.

Denote by C′
x,�,n the set of those sites which are at least at lattice distance

�+1 away from C(x,n), and C�(x,n) the complement of that set. Then
we have for |x−y|>�:

|P(σC(x,n)= θxA|σC(y,n)= θyA)−P(A)|
=
∣∣∣∣
∫∫ (

P
(
σC(x,n)= θxA|ηC′

x,�,n

)−P
(
σC(x,n)= θxA|ξC′

x,�,n

))
dP(η|σC(y,n)= θyA)dP(ξ)

∣∣∣∣

�
∫ ∫

P
η

C�(x,n)
⊗P

ξ

C�(x,n)

(
C(x,n)�∂C�(x, n)

)
dP(η|σC(y,n)= θxA)dP(ξ)

� 1
P(A)

P⊗P
(
C(x,n)�∂C�(x, n)

)
� 1

P(A)
|∂C(x, n)| e−d(C(x,n),∂C�(x,n))

� e−cnd+1+c′nd � e−c̃nd+1
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where in the last step we made the choice �=�n=nd+1. Using the second
moment estimate (Lemma 4.2 in ref. 4) and proceeding as in the proof of
Lemma 4.3 in ref. 4, we obtain the inequality

P(TA� t)
tP(A)

� 1

1+ e−δn�d + tP(A)+ e−cnd+1
t/P(A)

� 1
1+C1 +1/2+C2

where

C1 = sup
n
nd(d+1) e−δn <∞, C2 = sup

A

sup
t�1/(2P(A))

e−cn
d+1
t/P(A)<∞.

The upper bound is derived as in the high temperature case, see ref. 4.

4.2. Iteration Lemma and Proof of Theorem 1

This is the analogue of Lemma 4.4 in ref. 4.
We consider k mutually disjoint cubes Ci such that |Ci | = fA =

(�P(A)−θ/d�+1)d , where 0<θ <1 is fixed. The essential point is to make
precise the approximation of P(A⊀∪k

i=1Ci) by P(A⊀C1)
k.

For a cube Ci we denote by C�
′

i ⊆Ci the largest cube inside Ci with
the same midpoint as Ci and such that the boundary ∂Ci is at least at lat-
tice distance �′ away from C�

′
i , where �′ =�′(n, t) > nd+1 will be fixed

later. We have

P

(
A⊀∪ki=1Ci

)

=P(A⊀C1|A⊀C2 ∩A⊀C3 ∩· · ·∩A⊀Ck)

×P(A⊀C2 ∩A⊀C3 ∩· · ·∩A⊀Ck)

=
(
P(A⊀C�

′
1 |A⊀C2 ∩A⊀C3 ∩· · ·∩A⊀Ck)+ ε1

)

×P(A⊀C2 ∩A⊀C3 ∩· · ·∩A⊀Ck)

=
(
P(A⊀C�

′
1 )+ ε1 + ε2

)
P(A⊀C2 ∩A⊀C3 ∩· · ·∩A⊀Ck)

= (P(A⊀C1)+ ε1 + ε2 + ε3)P(A⊀C2 ∩A⊀C3 ∩· · ·∩A⊀Ck).

We now start to estimate the errors εi . For the first one:

|ε1| � P(A⊀C�
′

1 ∩A≺C1|A⊀C2 ∩A⊀C3 ∩· · ·∩A⊀Ck)

� �′f (d−1)/d
A P(A) ecn

d−1
.
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In the last step, the factor ecn
d−1

arises by removing the conditioning and
using the following general property of Gibbs measures:

sup
η,ξ

P(σCn =A|ηCcn)

P(σCn =A|ξCcn)
� ecnd−1

.

For ε2 we use the disagreement percolation estimate, as in the proof of
Lemma 2:

|ε2|�
P⊗P(C�

′
1 �∂C1)

P(A⊀C2 ∩A⊀C3 ∩· · ·∩A⊀Ck)
� e−c1�

′
ec2n

d � e−cnd+1

where c1, c2, c>0. Finally, proceeding as in the estimation of ε1, we get

ε3 ��′f (d−1)/d
A P(A)

where now the boundary factor ecn
d−1

is absent since we do not have a
conditioned measure. Let

αk−p=P(A≺∪ki=p+1Ci).

We obtain the recursion inequality:

αk � (α1 + ε1 + ε3)αk−1 + ε

where ε�e−cnd+1
. Following the lines of the proof of Lemma 4.4 in ref. 4

[formula (38)] this gives

αk −αk1 �

k
(

2�′f (d−1)/d
A P(A)ecn

d−1
)(

P(A⊀C1)+2�′f (d−1)/d
A P(A)ecn

d−1
)k−1

+kε=: I+ II.

Now, fix fA=P(A)−θ , �′ = tnd+1 and k=� t
P(A)fA

�. Then we have

I� te−cnd .

and

II� te−ctnd+1
.

Therefore, as long as t <eκn
d

with κ <c, we have
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αk −αk1 � e−c′nd e−ct .

The lower bound

αk −αk1 � e−c′nd e−ct

is obtained analogously. At this stage, one can repeat the proof of ref. 4
to obtain (3.1) in Theorem 1.

4.3. Return Time

Let C = C
f

1/d
A

where fA = (�P(A)−θ/d� + 1)d . (Notice that Cn ⊆C as
long as n is large enough.) For a pattern A=An and a configuration σ ∈�
such that σCn =A we write A≺∗ C for the event that A appears at least
twice C and A⊀

∗C is the event that A occurs in C only on Cn, i.e., the
number of occurrences is equal to one.

In order to repeat the iteration lemma for pattern repetitions, we first
prove the following lemma.

Lemma 3. Let A=An be a good pattern, then there exists c>0 such
that for the cube C=C

f
1/d
A

where fA= (�P(A)−θ/d�+1)d , we have

∣∣P(A⊀
∗C|A)−P(A⊀C)

∣∣� e−cnd .

Proof. Since A is good, A does not appear in any cube θxCn for
|x| < n/2. We will introduce a gap � with a n-dependence to be cho-
sen later on. Denote by C�n the minimal cube containing Cn such that its
boundary is at distance at least � from Cn. We have

|P(A⊀
∗C|A)−P(A⊀

∗C \C�n |A)| � P(A≺C�+n+1
n \Cn/2|A)

� (�+n+1)de−cn
d

.

To get the last inequality, remark that

P(A≺C�+n+1
n \Cn/2|A)� |C�+n+1

n \Cn/2| sup
V :|V |>(n/2)d

sup
B∈�V

sup
η∈�

P(B|ηV c)

(4.1)
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since |θxCn \ Cn|> (n/2)d for |x| � n/2. The rhs of (4.1) is bounded by
e−cnd by the Gibbs property (2.3) and the fact that a conditioning can at
most cost a factor ecn

d−1
. Now we can use the mixing property to obtain

|P(A⊀
∗C \C�n |A)−P(A⊀C \C�n )|� e−c1�ec2n

d

f
(d−1)/d
A

and finally,

|P(A⊀C)−P(A⊀C \C�n )|��f (d−1)/d
A P(A)

which yields the statement of the lemma by choosing fA= (�P(A)−θ/d�+
1)d and �=nd+1.

We can now state the analogue of the iteration lemma for pattern rep-
etitions.

Lemma 4. Let A=An∈Gn be a good pattern. Let Ci , i=1, . . . , k, be
a collection of disjoint cubes of volume fA such that C1 =C

f
1/d
A

. We have
the following estimate:

P(A⊀
∗ ∪ki=1Ci |A)− [P(A⊀C1)]

k

� k
(

2�f (d−1)/d
A P(A)ecn

d−1
)(

P(A⊀C1)+2�f (d−1)/d
A P(A)ecn

d−1
)k−1

+ ke−c�+ e−cndP(A⊀C1)
k−1.

Proof. Start with the following identity:

P(A⊀
∗ ∪ki=1Ci |A)=

P(A∩A⊀
∗C1 ∩A⊀C2 ∩· · ·∩A⊀Ck)

P(A)
· (4.2)

We can proceed now as in the proof of the iteration lemma to approxi-
mate the rhs of (4.2) by

�k = P(A∩A⊀
∗C1)

P(A)
P(A⊀C2) · · ·P(A⊀Ck)

at the cost of an error ε which can be estimated by

ε�k
(
2�f (d−1)/d

A P(A)ecn
d−1

(
P(A⊀C1)+2�f (d−1)/d

A P(A)ecn
d−1

)k−1+ke−c�.
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Now, to replace �k by P(A⊀C1)
k, use Lemma 3 to conclude that this

replacement induces an extra error which is at most

e−cn
d

P(A⊀C1)
k−1. (4.3)

The lemma is proved.

4.4. Matching Time

In order to prove the exponential law (3) for matching times, we first
remark that for cylinders An defined on �×�= ({+,−} × {+,−})Zd , we
have the analogue of Theorem 1 under the measure P ⊗P with the same
proof. Indeed, a typical configuration drawn from P⊗P is a sea of (+,+)
with exponentially damped islands of non (+,+). We now generalize the
statement of Theorem 1 to the Fn measurable events that we need (which
are not cylindrical).

Lemma 5. Suppose En={(σ, η): σx =ηx, ∀x ∈Cn}. Theorem 1 holds
with An replaced by En and P replaced by P⊗P.

Proof. Clearly, the analogue of the iteration lemma does not pose
any new problem. The main point is to prove the non-triviality of the
parameter, i.e., the analogue of Lemma 2. In order to obtain this, we have
to estimate the second moment of

Nk
En

=
∑

x:Cn+x⊆Ck
I (θxEn)

under P⊗P. As before we split

E×E(Nk
En
)2 � I1 + I2 + I3 (4.4)

where I1 =∑
x=y P⊗P(En)�(k+1)dP(En), I2 =∑

x 
=y,|x−y|�� P⊗P(θxEn∩
θyEn) and I3 = ∑

x 
=y,|x−y|>� P ⊗ P(θxEn ∩ θyEn). The only problematic
term here is I2. As in the proof for cylindrical events, we will use the
Gibbs property, and prove first the existence of 1>δ>0 such that

δ�P⊗P(σx =ηx |(σ, η)Zd\{x})�1− δ. (4.5)
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We now further estimate

P⊗P(σx =ηx |(σ, η)Zd\{x}) =
∑
ε=+,−

P(σx = ε|σ)P(ηx = ε|η)

� sup
σ,η

[P(+|σ)P(+|η)+ (1−P(+|σ))(1−P(+|η))] .
(4.6)

Since by the Gibbs property 0<ζ <P(+|η)<1−ζ <1, we can bound (4.6)
by

max
ζ<x,y<1−ζ

(2uv−u−v−1)<1

where the last inequality follows from

2uv�u2 +v2<u+v

for u, v<1− ζ <1. From inequality (4.5), we obtain using d�2:

∑
x∈Ck

∑
y 
=x,|y−x|��

P⊗P(θyEn|θxEn) P⊗P(En)

� (k+1)d(�+1)d sup
σ,η

sup
k�n

sup
x1,... ,xk∈Zd

P⊗P(σx1 =ηx1 , . . . , σxk =ηxk |(σ, η)Zd\{x1,... ,xk})
� (1− δ)n.

Therefore, choosing �=nd+1, we obtain

∑
x∈Ck

∑
y 
=x,|y−x|��

P⊗P(θyEn|θxEn)P⊗P(En)� (k+1)dC

where

C= sup
n
nd(d+1)(1− δ)n <∞.

The third term in the decomposition (4.4) is estimated as in the proof of
Lemma 2. At this point we can repeat the proof of Lemma 2.
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4.5. Poisson Law for Occurrences

For a good pattern A= An supported on Cn, we define the second
occurrence time by the relation:

(T 2
A(σ)�kd)= (N(A,Vk, σ )�2)

and the restriction that T 2
A can only take values (k+ 1)d , k ∈N. Similarly

we define the pth occurrence time:

(T
p
A (σ )�k

d)= (N(A,Vk, σ )�p)

and the same restriction. The following proposition shows that in the limit
n→ ∞, properly normalized increments of the process {T kAn : k ∈ N} con-
verge to a sequence of independent exponentials. This implies convergence
of the finite dimensional distributions of the counting process to a Poisson
process defined in (3.4).

Proposition 1. Let An be a good pattern (in the sense of Definition
1). Define τ

p
An

= T
p
An

− T
p−1
An

, where T 0
An

= 0. For all p ∈ N, t1, . . . , tp ∈
[0,∞),

lim
n→∞ P



[
τ
p

An
�

p∑
i=1

ti/P(An)

]
∩

τp−1

An
�
p−1∑
i=1

ti/P(An)


∩· · ·∩

[
τ 1
An

� t1/P(An)
]

= e−(t1+···tk )(1− e−(t1+···tk−1)) · · · (1− e−t1).

Proof. We start with the case of two occurrence times T1, T2:

P

(
T1 � t

P(A)
∩T2 � s

P(A)
+T1

)

=
∑

k� t
P(A)

P

(
T2 � s

P(A)
+k

∣∣∣ T1 =k
)

P(T1 =k).

Let us denote by Ck the cube defined by the relation (T1 � k)= (A≺
Ck), and by A≺1Ck the event that A appears for the first time in Ck (more
precisely A≺1 Ck abbreviates the event (T1 = k), i.e., ∩l<k(A⊀Cl)∩ (A≺
Ck)).

Let us denote by C�k the �-extension of Ck, i.e., the minimal cube
containing Ck such that ∂C�k and ∂Ck are at least � apart. Recall that
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C(t/P(A)) denotes the maximal cube of the form Ck = [0, k]d ∩ Z
d such

that |Ck|� t/P(A). Remember that

|C(t/P(A))|
t/P(A)

→1

as n→∞.

Lemma 6. If A is a good pattern, then we have the estimate

P

(
T2 � s

P(A)
+k

∣∣∣ A≺1 Ck

)
−P

(
A⊀C

(
s

P(A)

)
\C�k

∣∣∣ A≺1 Ck

)

��f (d−1)/d
A e−cn

d

.

Proof. The proof is identical to that of Lemma 3.

Now we want to replace

P

(
A⊀C

(
s

P(A)

)
\C�k

∣∣∣ A≺1 Ck

)

by the unconditioned probability of the same event. We make the choice
�= nd+1. By the disagreement percolation estimate, this gives an error
which can be bounded by

∑
k�t/P(A)

P(T1 =k)
[
P

(
A⊀C

(
s+t
P(A)

)
\C�k

∣∣∣A≺1 Ck

)
−P

(
A⊀C

(
s+t
P(A)

)
\C�k

)]

�
∑

k�t/P(A)
e−c�� t2ecnd e−c′nd+1

.

Finally, we have

sup
k�t/P(A)

[
P

(
A⊀C

(
s+ t
P(A)

)
\C�k

)
−P

(
A⊀C

(
s+ t
P(A)

)
\C

(
t

P(A)

))]

��(t/P(A))(d−1)/d
P(A)=�t(d−1)/d

P(A)1/d .

By the exponential law, we have, using |C((t + s)/P(A)) \ C(t/P(A))| =
t/P(A):

P

(
A⊀C

(
s+ t
P(A)

)
\C

(
t

P(A)

))
= exp(−λAs)+ εn



598 Chazottes and Redig

where εn= ε(n, t, s)→0 as n→∞. Which gives:

lim
n→∞

(
P(τ2 � s/P(A)∩ τ1 � t/P(A))− lim

n
P(τ1 � t/P(A))e−λAs

)

= lim
n→∞

(
P(τ2 � s/P(A)∩ τ1 � t/P(A))− (1− e−λAt )e−λAs)=0.

This proves the statement of the proposition for k=2, the general case is
analogous and left to the reader.

The following proposition follows immediately from Proposition 1.

Proposition 2. Let An∈Gn be a good pattern supported on Cn. Then
the finite dimensional marginals of the process {Nn

t/λAn
: t � 0} converge to

the finite dimensional marginals of a mean one Poisson process as n tends
to infinity.

In order to obtain convergence in the Skorokhod space, we have to prove
tightness. This is an immediate consequence of the following simple lemma
for general point processes, applied to

Nn
t =N(An,C(t/P(An)), σ ).

Lemma 7. Let {Nn
t : t�0} be a sequence of point processes with path

space measures P
T
n on D([0, T ],N). If there exists C> 0 such that for all

n and for all t�T we have the estimate

E
T
n (N

n
t )�Ct (4.7)

then the sequence P
T
n is tight.

Proof. From (4.7) we infer for all n, t�T

P
T
n (N

n
t �K)�CT/K.

Hence

lim
K↑∞

sup
0�t�T

sup
n

P
T
n (N

n
t �K)=0 (4.8)

For a trajectory ω∈D([0, T ],N) one defines the modulus of continuity

wγ (T ,ω)= inf
(ti )

N
i=1

N
sup
i=1

|ωti −ωti−1 |



Occurrence, Repetition and Matching 599

where the infimum is taken over all partitions t0 =0<t1< · · ·<tN = t such
that ti− ti−1 �γ . If for some ε>0 wγ (T ,ω)�ε, then the number of jumps
of ω in [0, T ] is at least [T/γ ]. Hence we obtain using (4.7):

P
T
n (wγ (T ,ω)� ε)�P

T
n (N

n
T �T/γ )�Cγ.

This gives for all ε >0:

lim
γ↓0

sup
n

P
T
n (wγ (T ,ω)� ε)=0. (4.9)

Combination of (4.8) and (4.9) with the tightness criterion (ref. 14, p. 152)
yields the result.

Remark 5. With much more effort, one can obtain precise bounds
for the difference

∣∣P(Nn
t /λAn =k)− tk

k!
e−t

∣∣

which are well-behaved in n, t and k. In particular, from such bounds one
can obtain convergence of all moments of Nn

t /λAn to the corresponding
Poisson moments. This is done in ref. 1 in the context of mixing processes.

4.6. Gumbel Law

For η, σ ∈� denote

V0(η, σ )=
⋃

{Gk: σGk =ηGk }.

We start with the following simple lemma:

Lemma 8. 1. There exists δ>0 such that for all η∈�:

inf
k∈N

P⊗P(V0 ⊃Gk+1)

P(V0 ⊃Gk) � δ.

2. There exists a non-decreasing sequence un ↑ ∞ such that for all
n∈N:

1�nP(V0 ⊃Gun)�
1
δ

·



600 Chazottes and Redig

Proof. For item 1:

P⊗P(V0 ⊃Gk+1)

P⊗P(V0 ⊃Gk) = P⊗P(ηxn+1 =σxn+1 |σGn =ηGn)
� inf

ξ,σ
P⊗P(σx =ηx |σZd\{x}, ξZd\{x})

= δ>0

where the last inequality follows from the fact that P⊗P is a Gibbs mea-
sures. For item 2, put

f (n)=P⊗P(V0 ⊃Gn)

and

u+
n = min{k: f (k)�1/n}
u−
n = max{k: f (k)�1/n}

Clearly,

u−
n �u+

n �u−
n +1.

Now choosing un=u−
n and using (4.10), we obtain

1
n

� P⊗P(V0 ⊃Gun)

= P⊗P(V0 ⊃Gun)
P⊗P(V0 ⊃Gun+1)

P⊗P(V0 ⊃Gun+1)

� 1
δn

·

We now adapt our definition of matching time to the sequence of sets
Gn:

τG
n (η, σ )=min{k: ∃x: Gn+x⊆Gk such that σGn+x =ηGn+x}.

We have the relation

(Mn(η, σ )�k)= (τG
k (η, σ )�n).



Occurrence, Repetition and Matching 601

In words: the maximal matching inside Gn is greater than or equal to k

if and only if the first time that a matching on a set Gk happens is not
larger than n. Now we choose k=un+ x (x ∈N) and use the exponential
law for matching times:

P⊗P(τG
un
(η, σ )�n)=1− exp(−λnP⊗P(σGun+x =ηGun+x ))+ εn

where εn goes to zero as n goes to infinity. By the choice of un,

P⊗P(σGun+x =ηGun+x )=P⊗P(V0(η, σ )⊃Gun+x)∈
[
A

n
e−νx,

B

n
e−ν

′x
]

(4.10)

where A,B ∈ (0,∞) and

0<e−ν = lim inf
n→∞

P⊗P(σGn+1 =ηGn+1)

P⊗P(σGn =ηGn)
<1

and

0<e−ν
′ = lim sup

n→∞
P⊗P(σGn+1 =ηGn+1)

P⊗P(σGn =ηGn)
<1.

Here the inequality for the lim inf is an immediate consequence of Lemma
8, and the inequality for the lim sup is derived in a completely analogous
way, using the Gibbs property. The theorem now follows immediately from
(4.10).

4.7. Proof of Theorem 6

We start by showing the following summable upper-bound of

P{σ : log(RσCn
(σ )P(σCn))� log t}

�
∑
An∈Gn

P(An)P{σ : log(RAn(σ )P(An))� log t | An}+
∑
An∈Gcn

P(An).

From Theorem 2 and Lemma 1 we get for all 0<t <eκn
d

P{σ : log(RσCn
(σ )P(σCn))� log t}� e−c′nd + e−�1t + e−cnd .
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Take t= tn= log(nε), ε >�−1
1 , to get

P{σ : log(RσCn
(σ )P(σCn))� log log(nε)}� e−c′nd + 1

nε�1
+ e−cnd .

An application of the Borel–Cantelli lemma leads to

log
(
RσCn

(σ )P(σCn)
)
� log log(nε) eventually a.s..

For the lower bound first observe that Theorem 2 gives, for all 0<t <ecn
d

P{σ : log(RσCn
(σ )P(σCn))� log t}� e−c′nd +1− exp(−�2t)+ e−cnd .

Choose t= tn=n−ε , ε >1, to get, proceeding as before,

log
(
RσCn

(σ )P(σCn)
)
�−ε logn eventually a.s..

Finally, let ε0 =max(�−1
1 ,1).

4.8. Proof of Theorem 7

We first show that the strong approximation formula (3.7) holds with
W(Cn, η, σ ) in place of RσCn

(σ ) with respect to the measure Q ⊗ P. We
have the following identity:

∫
dQ(η) P

{
σ : TηCn

(σ )>
t

P(ηCn)

}

= (Q⊗P)

{
(η, σ ): W(Cn, η, σ )>

t

P(ηCn)

}
.

This shows that Theorem 1 remains valid if we replace TηCn
(σ ) with

W(Cn, η, σ ) and P with Q ⊗ P, hence so is Theorem 6. Therefore for ε
large enough, we obtain

−ε logn� log(W(Cn, η, σ )P(ηCn))� log lognε (4.11)

for Q⊗P-eventually almost every (η, σ ). Write

log(W(Cn, η, σ )P(σCn))= log W(Cn, η, σ )+ log Q(ηCn)− log
Q(ηCn)

P(ηCn)
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and use (4.11). After division by nd , we obtain (3.10) since
limn→∞ 1

nd
log Q(σCn)=−s(Q), Q-a.s. by the Shannon–McMillan–Breiman

Theorem and limn→∞ 1
nd

log Q(ηCn )

P(ηCn )
=s(Q|P), Q-a.s. by the Gibbs variational

principle (See e.g. ref. 4 for a proof).

4.9. Proof of Theorem 8

We follow the line of proof of ref. 4 to compute W(q). The only extra
complication in our case is that the bound

P

(
TAn >

t

P(An)

)
� e−ct

for all t >0 cannot be obtained directly from Theorem 1. Instead we will
use the following lemma which shows that such a bound can be obtained
by a rough version of the iteration lemma. Given this result, the proof of
ref. 4 can be repeated.

Lemma 9. 1. There exists c > 0 such that for all patterns An ∈
{+,−}Cn

P

(
TAn >

t

P(An)

)
� e−ct .

2. There exists δ∈ (0, 1
2 ) such that for all n and all pattern A=An

0<δ<P(TA>
1

2P(A)
)<1− δ<1.

Proof. To prove the first inequality, we fill part of the cube C(t/P(A))
with little cubes of size fA (where fA is defined in Lemma 4.2), with k�
t/(2P(A)fA). The gaps � separating the different cubes are taken equal to
�tnd+1�. We then have the following

P(TA> t/P(A))�P(A⊀∪Ki=1Ci).

Notice that we do not have to estimate here the probability that the pat-
tern is not in the gaps since we only need an upper bound. Now

αK =P(A⊀∪Ki=1Ci)

=P(A⊀C1|A⊀∪Ki=2Ci)P(A⊀∪Ki=2Ci)=P(A⊀C1|A⊀∪Ki=2Ci)αK−1.
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Using the disagreement percolation estimate, we have

P(A⊀C1|A⊀∪Ki=2Ci)−α1 � e−�.

Therefore

αK �αK−1α1 + e−�.

Iterating this inequality gives, using �=�tnd+1�,

αK �αK1 + e−tnd+1
ecn

d

t

Now we use K>t/2P(A)fA, and Lemma 2 to obtain:

αK � (1−�1fAP(A))t/(2fAP(A))+ e−ct

which implies the first inequality of the lemma.
The second inequality follows directly from Lemma 2.

4.10. Proof of Theorem 9

The proof of (3.12) is identical to the proof of (3.9) but using the
exponential law for the matching time. Formula (3.13) follows from

P⊗P(σCn =ηCn)=
∑

σCn∈{+,−}Cn
P(σCn)

2

and the definition of W .
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